Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sci Rep ; 13(1): 7263, 2023 05 04.
Article in English | MEDLINE | ID: covidwho-2320843

ABSTRACT

The immunogenicity of SARS-CoV-2 vaccines is poor in kidney transplant recipients (KTRs). The factors related to poor immunogenicity to vaccination in KTRs are not well defined. Here, observational study demonstrated no severe adverse effects were observed in KTRs and healthy participants (HPs) after first or second dose of SARS-CoV-2 inactivated vaccine. Different from HPs with excellent immunity against SARS-CoV-2, IgG antibodies against S1 subunit of spike protein, receptor-binding domain, and nucleocapsid protein were not effectively induced in a majority of KTRs after the second dose of inactivated vaccine. Specific T cell immunity response was detectable in 40% KTRs after the second dose of inactivated vaccine. KTRs who developed specific T cell immunity were more likely to be female, and have lower levels of total bilirubin, unconjugated bilirubin, and blood tacrolimus concentrations. Multivariate logistic regression analysis found that blood unconjugated bilirubin and tacrolimus concentration were significantly negatively associated with SARS-CoV-2 specific T cell immunity response in KTRs. Altogether, these data suggest compared to humoral immunity, SARS-CoV-2 specific T cell immunity response are more likely to be induced in KTRs after administration of inactivated vaccine. Reduction of unconjugated bilirubin and tacrolimus concentration might benefit specific cellular immunity response in KTRs following vaccination.


Subject(s)
COVID-19 , Kidney Transplantation , Female , Humans , Male , Tacrolimus , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Immunity, Cellular , Bilirubin , Immunity, Humoral , Transplant Recipients , Vaccination , Antibodies, Viral
2.
Biomaterials ; 296: 122075, 2023 05.
Article in English | MEDLINE | ID: covidwho-2289063

ABSTRACT

Skin-interfaced electronics (skintronics) have received considerable attention due to their thinness, skin-like mechanical softness, excellent conformability, and multifunctional integration. Current advancements in skintronics have enabled health monitoring and digital medicine. Particularly, skintronics offer a personalized platform for early-stage disease diagnosis and treatment. In this comprehensive review, we discuss (1) the state-of-the-art skintronic devices, (2) material selections and platform considerations of future skintronics toward intelligent healthcare, (3) device fabrication and system integrations of skintronics, (4) an overview of the skintronic platform for personalized healthcare applications, including biosensing as well as wound healing, sleep monitoring, the assessment of SARS-CoV-2, and the augmented reality-/virtual reality-enhanced human-machine interfaces, and (5) current challenges and future opportunities of skintronics and their potentials in clinical translation and commercialization. The field of skintronics will not only minimize physical and physiological mismatches with the skin but also shift the paradigm in intelligent and personalized healthcare and offer unprecedented promise to revolutionize conventional medical practices.


Subject(s)
COVID-19 , Wearable Electronic Devices , Humans , SARS-CoV-2 , Electronics , Delivery of Health Care
3.
Frontiers in endocrinology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2147820

ABSTRACT

Aims The global COVID-19 pandemic has required a drastic transformation of prenatal care services. Whether the reformulation of the antenatal care systems affects maternal and infant outcomes remains unknown. Particularly, women with gestational diabetes mellitus (GDM) are among those who bear the greatest brunt. Thus, this study aimed to evaluate the impact of COVID-19 lockdown during late pregnancy on maternal and infant outcomes in women stratified by the GDM status in China. Study design The participants were women who experienced the COVID-19 lockdown during late pregnancy (3185 in the 2020 cohort) or not (2540 in the 2019 cohort) that were derived from the Beijing Birth Cohort Study. Maternal metabolic indicators, neonatal outcomes, and infant anthropometrics at 12 months of age were compared between the two cohorts, stratified by the GDM status. Results Participants who experienced COVID-19 lockdown in late pregnancy showed lower gestational weight gain than those in the control cohort. Nevertheless, they displayed a worse metabolic profile. COVID-19 lockdown during pregnancy was associated with higher glycosylated hemoglobin (HbA1c) (β= 0.11, 95% CI = 0.05–0.16, q-value = 0.002) and lower high density lipoprotein cholesterol level (HDL-C) level (β=–0.09, 95% CI = –0.14 to –0.04, q-value = 0.004) in women with GDM, adjusted for potential confounders. In normoglycemic women, COVID-19 lockdown in late pregnancy was associated with higher fasting glucose level (β= 0.10, 95% CI = 0.08–0.12, q-value <0.0001), lower HDL-C level (β=–0.07, 95% CI = –0.08 to –0.04, q-value <0.0001), and increased risk of pregnancy-induced hypertension (adjusted OR=1.80, 95%CI=1.30–2.50, q-value=0.001). The fasting glucose level decreased less from early to late pregnancy in women who experienced COVID-19 lockdown than in the controls, regardless of the GDM status. The HDL-C has risen less with COVID-19 lockdown in the normoglycemic subgroup. In contrast, no significant differences regarding neonatal outcomes or infant weight were found between the two cohorts. Conclusion Experiencing the COVID-19 lockdown in pregnancy was associated with worse maternal metabolic status but similar neonatal outcomes and infant weight.

4.
Cells ; 11(21)2022 Oct 24.
Article in English | MEDLINE | ID: covidwho-2082270

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an infectious disease that has become a serious burden on global public health. This study screened and yielded specific nanobodies (Nbs) against SARS-CoV-2 spike protein receptor binding domain (RBD), following testing its basic characteristics. A nanobody phage library was established by immunizing a camel with RBD protein. After three rounds of panning, the positive colonies were screened by enzyme-linked immunosorbent assay (ELISA). By sequencing, four different sequences of nanobody gene fragments were selected. The four nanobody fusion proteins were expressed and purified, respectively. The specificity and affinity of the four nanobodies were identified by ELISA. Our results showed that an immune phage display library against SARS-CoV-2 has been successfully constructed with a library capacity of which was 4.7 × 108 CFU. The four purified nanobodies showed specific high-affinity binding SARS-CoV-2 S-RBD. Among these, the antigen binding affinity of Nb61 was more comparable to that of commercial rabbit anti-SARS-CoV-2 S-RBD antibodies. In sum, our study has obtained four nanobody strains against SARS-CoV-2 S-RBD with significant affinity and specificity, therefore laying an essential foundation for further research as well as the applications of diagnostic and therapeutic tools of SARS-CoV-2.


Subject(s)
COVID-19 , Single-Domain Antibodies , Animals , Humans , Rabbits , Spike Glycoprotein, Coronavirus/chemistry , Antibodies, Neutralizing , SARS-CoV-2 , Camelus
5.
Research (Wash D C) ; 2022: 9864089, 2022.
Article in English | MEDLINE | ID: covidwho-1979971

ABSTRACT

Due to the rapid spread of coronavirus disease 2019 (COVID-19), there is an urgent requirement for the development of additional diagnostic tools for further analysis of the disease. The isolated nanobody Nb11-59 binds to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor-binding domain (RBD) with high affinity to neutralize the virus and block the angiotensin-converting enzyme 2- (ACE2-) RBD interaction. Here, we introduce a novel nanobody-based radiotracer named 68Ga-Nb1159. The radiotracer retained high affinity for the RBD and showed reliable radiochemical characteristics both in vitro and in vivo. Preclinical positron emission tomography (PET) studies of 68Ga-Nb1159 in mice revealed its rapid clearance from circulation and robust uptake into the renal and urinary systems. Fortunately, 68Ga-Nb1159 could specifically reveal the distribution of the RBD in mice. This study also helped to evaluate the pharmacodynamic effects of the neutralizing nanobody. Moreover, 68Ga-Nb1159 may be a promising tool to explore the distribution of the RBD and improve the understanding of the virus. In particular, this study identified a novel molecular radioagent and established a reliable evaluation method for specifically investigating the RBD through noninvasive and visual PET technology.

6.
Anal Chim Acta ; 1211: 339904, 2022 Jun 08.
Article in English | MEDLINE | ID: covidwho-1819418

ABSTRACT

Until now, COVID-19 caused by SARS-CoV-2 is engulfing the worldwide and still ranging to date, continuing to threaten the public health. The main challenge facing COVID-19 epidemic is short of fast-response and high-efficiency methods to determine SARS-CoV-2 viral pathogens. Herein, a nanobody-based label-free photoelectrochemical (PEC) immunosensor has been fabricated for rapidly detecting SARS-CoV-2 spike protein. As a small-size and high-stability antibody, nanobody was directly and well immobilized with Au nanoparticles and TiO2 spheres by the interaction. Au deposited TiO2 nanomaterial possessed 8.5 times photoelectric performance in comparison with TiO2 in the presence of electron donor owing to surface plasma resonance effect of Au. Based on the steric hindrance effect, this immunoassay platform realized the linear detection from 0.015 to 15000 pg mL-1, and a limit of detection was low as 5 fg mL-1. The label-free PEC immunoassay design provides a new idea for convenient, rapid, and efficient test of SARS-CoV-2 spike protein and broadens further application of nanobody as an identification agent to specific biomarkers.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Biosensing Techniques/methods , COVID-19/diagnosis , Electrochemical Techniques/methods , Gold , Humans , Immunoassay/methods , Limit of Detection , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
7.
MedComm (2020) ; 2(1): 101-113, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1121801

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has become a serious burden on global public health. Although therapeutic drugs against COVID-19 have been used in many countries, their efficacy is still limited. We here reported nanobody (Nb) phage display libraries derived from four camels immunized with the SARS-CoV-2 spike receptor-binding domain (RBD), from which 381 Nbs were identified to recognize SARS-CoV-2-RBD. Furthermore, seven Nbs were shown to block interaction of human angiotensin-converting enzyme 2 (ACE2) with SARS-CoV-2-RBD variants and two Nbs blocked the interaction of human ACE2 with bat-SL-CoV-WIV1-RBD and SARS-CoV-1-RBD. Among these candidates, Nb11-59 exhibited the highest activity against authentic SARS-CoV-2 with 50% neutralizing dose (ND50) of 0.55 µg/ml. Nb11-59 can be produced on large scale in Pichia pastoris, with 20 g/L titer and 99.36% purity. It also showed good stability profile, and nebulization did not impact its stability. Overall, Nb11-59 might be a promising prophylactic and therapeutic molecule against COVID-19, especially through inhalation delivery.

SELECTION OF CITATIONS
SEARCH DETAIL